Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770504

RESUMO

The determination of the surface energy balance fluxes (SEBFs) and evapotranspiration (ET) is fundamental in environmental studies involving the effects of land use change on the water requirement of crops. SEBFs and ET have been estimated by remote sensing techniques, but with the operation of new sensors, some variables need to be parameterized to improve their accuracy. Thus, the objective of this study is to evaluate the performance of algorithms used to calculate surface albedo and surface temperature on the estimation of SEBFs and ET in the Cerrado-Pantanal transition region of Mato Grosso, Brazil. Surface reflectance images of the Operational Land Imager (OLI) and brightness temperature (Tb) of the Thermal Infrared Sensor (TIRS) of the Landsat 8, and surface reflectance images of the MODIS MOD09A1 product from 2013 to 2016 were combined to estimate SEBF and ET by the surface energy balance algorithm for land (SEBAL), which were validated with measurements from two flux towers. The surface temperature (Ts) was recovered by different models from the Tb and by parameters calculated in the atmospheric correction parameter calculator (ATMCORR). A model of surface albedo (asup) with surface reflectance OLI Landsat 8 developed in this study performed better than the conventional model (acon) SEBFs and ET in the Cerrado-Pantanal transition region estimated with asup combined with Ts and Tb performed better than estimates with acon. Among all the evaluated combinations, SEBAL performed better when combining asup with the model developed in this study and the surface temperature recovered by the Barsi model (Tsbarsi). This demonstrates the importance of an asup model based on surface reflectance and atmospheric surface temperature correction in estimating SEBFs and ET by SEBAL.


Assuntos
Algoritmos , Produtos Agrícolas , Brasil , Temperatura
2.
Ecotoxicology ; 29(2): 129-139, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865512

RESUMO

Rapid growth in the oil industry has been accompanied concomitant increases in risks of spills or leaks triggered by natural or anthropogenic causes that cause soil changes and plant damage. Bio-scavenging and phytoremediation plants are important tools for identifying pollutants and mitigating environmental damage. The objective of this study was to evaluate the phytoremediation potential of Ricinus communis cultivated in soils contaminated with mineral oil, and to determine the possible visual, anatomical and physiological effects. R. communis seeds were pre-germinated in individual pots containing Red Latosol contaminated with Lubrax Essential SL (15W-40) mineral oil at concentrations of 0 (control), 5, 10, and 15 g kg-1. After exposure to treatments, emergency evaluations were performed, and after 45 days of cultivation, visual, morphoanatomical, physiological and oil removal effects were evaluated. There was no difference in emergence showed between treatments. Visual effects were characterized by necrosis and chlorosis formation in R. communis, evidenced on the 45th day of cultivation in all treatments tested, followed by parenchymal tissue alterations with collapsed cell formation and damage to photosynthesis with increasing doses. We found that R. communis removed up to 81% of hydrocarbons in soils, classifying it as potential phytoremediator of contaminated soils. The strong correlation between the variables suggests that R. communis can be used as an indicator of pollutant action.


Assuntos
Biodegradação Ambiental , Óleo Mineral/metabolismo , Ricinus/fisiologia , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...